
Adversarial Extensions to Information Directed Sampling: A Primer

1 Introduction

The Bayesian perspective offers a simple and elegant
framework for tracking uncertainty in online optimiza-
tion problems. In structured bandit settings, it natu-
rally allows learners to take advantage of correlations
between arms using a technique called information di-
rected sampling (Russo and Van Roy 2014). The al-
gorithm is not limited to contexts with known priors,
however: recent work has adapted the technique for
adversarial bandits, allowing for robust learning with
minimal assumptions. This survey will introduce in-
formation directed sampling and its original informa-
tion theoretic analysis before showing how minor mod-
ifications allow the results to generalize naturally to an
adversarial, frequentist setting.

1.1 Bayesian Regret

I will adopt the highly general definition of Bayesian
Regret used in Bubeck et al. 2015. Let F be a
prior distribution over sequences of reward functions
f1, . . . fT , where each reward function ft maps actions
At from a set A to rewards Yt in R. I will denote
Yt,a = ft(a). Let A∗ be the best action in hindsight:

A∗ = maxa∈A
∑T

i=1 fi(a). This is a random variable,
as it depends on the functions sampled from F . Let
A1, A2, . . . AT be the actions chosen from a policy π.
The Bayesian Regret for policy π is defined as

BR(π) = E

[
T∑

i=1

fi(A
∗)− fi(Ai)

]

In the traditional stochastic multi-armed bandit prob-
lem, the ft(a) = Xa,t, where for every a, Xa,1, . . . Xa,T

are independent, identically distributed random vari-
ables. In general, however, the functions chosen at
each round can be correlated or time dependent, mak-
ing this model much more broadly applicable.

1.2 Beyond the Best Arm

Information directed sampling is motivated by settings
in which the reward for different arms are correlated.
In such settings, in can be beneficial to play arms you
know are suboptimal in order to learn more about
what the optimal arm might be. A simple example of
this setting comes from a variation of the linear bandit

problem. Let the true parameter θ∗ ∈ Rd be a one-hot
vector chosen uniformly at random. The action set
consists of vectors in {0, 1}d normalized to be a unit
vector in the L1 norm: A = { x

∥x∥1
|x ∈ {0, 1}d}. The

reward for action a ∈ A is aT θ∗.

We can interpret this setting as the task of recom-
mending an assortment of products to a new customer.
The action set corresponds to sets of products to offer
the customer, and the reward is the expected utility
the customer gains from the (assumedly randomly cho-
sen) product they buy. The true parameter θ∗ corre-
sponds to the product with the highest utility for this
customer.

Algorithms that seek to play the best arm at each time
like Thompson Sampling and UCB will only play 1-
sparse actions (as θ∗ is known to come from this set).
This can require up to d time-steps to find the best
action, as only one arm can be ruled out at each step.
A more effective search strategy would be a binary
search: start with a d/2-sparse action and halve the
number of nonzero elements at each step. This rules
out half of the remaining actions at each step, finding
the result in at most log d time-steps. We will see
later that algorithms based on information directed
sampling recover exactly this strategy.

2 The Information Ratio

Policies based solely on estimates of the best arm
fail cases like the previous section because they do
not account for the information gain gt(π) of play-
ing according to policy π at time t. Let Ft =
σ(A1, Y1, . . . At−1, Yt−1) and A∗ be the optimal action.
I will use the notation Pt(·) to mean P (·|Ft). Let
αt(a) = Pt(A

∗ = a) be the posterior distribution over
A∗ at time t. The following definitions of information
gain are equivalent.

1. It is the expected reduction in entropy Et[H(αt)−
H(αt+1)]. Note that this is an Ft measurable ran-
dom variable.

2. It is the posterior mutual information between A∗

and Yt:

It(A
∗, Yt) = D[Pt(A

∗, Yt)∥Pt(A
∗)Pt(Yt)]

Because it is defined in terms of conditional prob-
ability measures, note that this is still an Ft-



measurable random variable. We can derive this
from (1) using the conditional entropy formula-
tion of mutual information:

It(A
∗, Yt) = H(Pt(A

∗))− Et[H(Pt+1(A
∗)]

= H(αt)− Et[H(αt+1)]

3. It is the expectation (over all possible values of
A∗) of the KL divergence between Pt(Yt|A∗) and
Pt(Yt). We can see this from the definition using
posterior mutual information:

gt(π) = D[Pt(A
∗)P (Yt|A∗)∥Pt(A

∗)Pt(Yt)]

The Pt(A
∗) terms cancel out, leaving

E[D[Pt(Yt|A∗)∥Pt(Yt)]]

Instead of sampling from a policy that minimizes only
expected one step regret ∆t = Et[ft(A

∗)−Ea∼π[ft(a)]]
as in Thompson sampling, we can divide by a penalty
term rewarding information gain. The result, intro-
duced in (Russo and Van Roy 2014), is the information
ratio, defined at time t as

Γt(π) =
∆2

t

gt(π)

We can also think of the information gain as a function
of a specific action a rather than a full randomized pol-
icy π. In this case, I will use the overloaded notation
gt(a). The information gain for a policy π is the ex-
pected information gain for actions sampled sampled
from this policy. As above, we can write three equiva-
lent definitions for this “per-action” information gain:

1. g(a) = Et[H(αt)−H(αt+1)|At = a]

2. g(a) = It(A
∗, Yt|At = a) = D[Pt(A

∗, Yt|At =
a)∥Pt(A

∗)Pt(Yt|At = a)]

3. g(a) = Et[D[Pt(Yt|At = a,A∗)∥Pt(Yt|At = a)]]

Similarly, I will write ∆t(a) to mean ∆t = Et[ft(A
∗)−

ft(a)].

2.1 The Importance of Randomization

What if, instead of an importance ratio, we used an
importance difference ∆t − ηgt(a) for some η > 0?
Because it is a linear function of the probabilities of
each action, this difference would be optimized by
the deterministic policy which plays mina E[ft(A

∗) −
ft(a)] − ηgt(a). Unfortunately, policies where At is
chosen deterministically given Ft can have linear re-
gret. Consider a two arm setting in which ft(a1) ∼
Bernoulli(1/2) and ft(a2) ∼ Bernoulli(p), where the

unknown p ∼ Unif({ 1
4 ,

3
4}). If a deterministic policy

ever plays a1 at time t0, it learns nothing about p, and
the posteriors for p and A∗ will be unchanged. This
means that the policy will continue to play a1 at every
future t > t0, giving linear regret. On the other hand,
if we never play a1, we will always play a2, once again
giving linear regret.

This shows that the randomization we get by opti-
mizing an information ratio rather than a difference
is fundamentally important to the performance of the
algorithm. Using a difference is still possible, but we
need to add a regularization term to avoid collapsing
to deterministic policies. Specifically, (Xu and Zeevi
2023) define the Algorithmic Information Ratio as

AIRq(π, ν) = Ef ∼ν [f(A
∗)− Ea∼πf(a)]

− ηEf ∼ν [D[P (A∗|Yt)∥P (A∗)] +D[P (A∗)∥q]]

where ν is the prior distribution and qt is a reference
distribution for A∗. This provides a lower bound on
the importance ratio. Specifically, for any x ≥ 0, y >
0,

x2

y
= sup

η>0
(2ηx− η2y)

We can see this because the supremum will be obtained
when ∇(2ηx − η2y) = 0, or η = x/y. At this point,

2ηx − η2y = x2

y . A consequence of this observation is
that

AIR ≤ 1

η
IR

We will come back to the AIR later on, as it allows for
an adversarial setting, rather than a Bayesian one.

2.2 Bounding Regret with the Information
Ratio

The information ratio allows for a convenient upper
bound on regret (Russo 2016).

Theorem 1. If the information ratio is bounded by
Γ almost surely for each t ∈ {1 . . . T}, then for any
policy π,

E[Regret(T, π)] ≤
√

ΓH(A∗)T

Proof. First, we can see that the cumulative informa-
tion gain is upper bounded by the prior entropy.

E[

T∑
t=1

gt] = E[

T∑
t=1

Et[H(αt)−H(αt+1)]

= E[

T∑
t=1

H(αt)−H(αt+1)] by the tower property

= H(α1)−H(αT+1)

≤ H(α1) by the non-negativity of entropy



This lets us write

E[Regret(T, π)] = E

T∑
t=1

∆t

= E

T∑
t=1

√
Γt
√
gt

≤

√√√√E

T∑
t=1

Γt

√√√√E

T∑
t=1

gt by Holder

≤
√
ΓH(α1)T

3 The Information Ratio of
Thompson Sampling

Using Theorem 1 above, we can bound the regret of
any online learning algorithm by finding its informa-
tion ratio. The first analysis of this form was done for
Thompson sampling in Russo 2016. We start with a
decomposition of ∆i for Thompson sampling.

Lemma 2.

∆t =
∑
a∈A

αt(a)(E[ft(a)|A∗ = a]− E[ft(a)])

Proof. In Thompson sampling, Pt(At = a) is the same
as Pt(A

∗ = a) for all a. This means that

∆t =
∑
a

αt(a)E[ft(a
∗)|A∗ = a]

−
∑
a

P (At = a)E[ft(a)])

=
∑
a

αt(a)(E[ft(a
∗)|A∗ = a]− E[ft(a)])

A similar decomposition holds for the information
gain.

Lemma 3.

gt(π) =
∑
a,a∗

αt(a)αt(a
∗)D[Pt(ft(a)|A∗ = a)∥Pt(ft(a))]

Proof.

gt(π) =
∑
a

Pt(At = a)gt(a)

=
∑
a

Pt(At = a)
∑
a∗

Pt(A
∗ = a∗)

D[Pt(ft(a)|A∗)∥Pt(ft(a))]

Working from these decompositions, we can bound the
information ratio for Thompson sampling.

Theorem 4. For Thompson sampling with stochastic
k-armed bandits, Γt ≤ |A|/2 for all t.

Proof. Using the Cauchy Schwartz inequality on the
result of Lemma 2 gives

∆2
t =

(∑
a

αt(a)(E[ft(a
∗)|A∗ = a]

−
∑
a

P (At = a)E[ft(a)])

)2

≤ |A|
∑
a∗

αt(a
∗)2(E[ft(a

∗)|A∗ = a∗]− E[ft(a)])
2

≤ |A|
∑
a,a∗

αt(a
∗)αt(a)(E[ft(a

∗)|A∗ = a∗]

− E[ft(a)])
2

By Pinsker’s inequality,

(E[ft(a
∗)|A∗ = a∗]

−E[ft(a)])
2 ≤ 1

2
D(P (ft(a

∗)|A∗ = a∗)∥P (ft(a)))

This means

∆2
t ≤ |A|

2

∑
a,a∗

αt(a)
2D(P (ft(a

∗)|A∗ = a∗)∥P (ft(a)))

We can substitute the result of Lemma 3 into our pre-

vious expression to find that ∆2
t ≤ |A|

2 gt, and therefore
Γt ≤ |A|/2.

A similar proof applies when applying Thompson sam-
pling to linear bandit problems.

Theorem 5. Say A ⊂ Rd for which |A|= k. For all
t, assume E[ft(a)] = aT θ for a shared latent variable
θ. Then for all t, Γt ≤ d/2 almost surely.

Proof. Define M ∈ Rk×s as

Mi,j =
√
αt(i)αt(j)(E[ft(ai)|A∗ = aj ]− E[ft(ai)])

We can also write this as an inner product. Let µ =
E[θ] and µj = E[θ|A∗ = aj ]. Then by linearity of
expectation,

Mi,j =
√

αt(i)αt(j)((µ
j − µ)Tai)



By Lemma 2, we can see that ∆t = Trace Mi,j . Simi-
larly, by Lemma 3 and Pinsker’s inequality,

gt(π) ≥ 2
∑
i,j

αiαj(E[ft(ai)|A∗ = aj ]− E[ft(ai)])
2

= 2∥M∥F

where ∥M∥F indicates the Frobenious norm√
Trace(MTM).

For any matrix M

TraceM ≤
√
Rank(M)∥M∥F

This means that Γt ≤ Rank(M)
2 . It remains to show

that RankM ≤ d. We can decompose M as
√
α1(µ

1 − µ)T

...√
αk(µ

k − µ)T

 [√α(1)a1 . . .
√
α(k)ak

]
This shows that M is the product of a K × d matrix
and a d×K matrix, so the rank is at most d.

4 Information Directed Sampling

We can find an algorithm that can achieve a smaller in-
formation ratio than Thompson sampling (and there-
fore a smaller regret) by explicitly finding a policy that
minimizes the information ratio at every step. This is
called information directed sampling or IDS. The al-
gorithm was introduced for the stationary setting in
(Russo and Van Roy 2014), and was generalized to
arbitrary prior distributions over reward functions in
(Bubeck et al. 2015). For each time t we do the fol-
lowing.

1. First, compute the posterior reward distributions
given Ft. This lets us compute Et[ft(a)] for each
a.

2. Using the posterior reward distributions, calculate
αt, the posterior distribution of A∗ given Ft. This
lets us compute E[ft(A

∗)].

3. Compute gt(a) for each action a.

4. Together, these quantities let us compute Γt(π)
for any π. Find the minimizing π and sample it
to get At.

The minimization problem in each round of Informa-
tion Directed Sampling can be simplified by noting

Theorem 6. The minimizing policy π for IDS will
have at most two nonzero components.

Proof. First, note that the following optimization
problems are minimized by the same π.

1. Minimize Γt(π) subject to πT 1 = 1.

2. Minimize ρ(π) = (πT∆i)
2 − (πT g)Γ∗, where Γ∗ is

the optimal objective for (1).

We can see this because if (1) achieves objective Γ∗,
then (2) has objective 0. But (2) is non-negative be-
cause (πT∆i)

2 − (πT g)Γ∗ ∝ Γt − Γ∗. Similarly, if (2)
achieves objective 0, then Γt − Γ∗ = 0, so (1) achieves
objective Γ∗. This shows that it suffices to analyze
minimizers of (2).

Consider a policy π∗ minimizing (2). We can show that
every component of the gradient where π∗ > 0 must
have the same value d∗. Say there were two nonzero

components i and j where ∂ρ(π∗)
∂πi

> ∂ρ(π∗)
∂πi

. Decrease
the probability of component i by ϵ while increasing
the probability of component j to compensate, staying
on the simplex. The objective value will change by

ϵ(∂ρ(π
∗)

∂πj
− ∂ρ(π∗)

∂πi
)+O(ϵ2). We can choose ϵ to be small

enough that this will always be negative, showing that
π∗ cannot be local minimum.

From this argument, we can see that for any compo-
nent i where π∗

i > 0, ∂
∂πi

ρ(π∗) = d∗ = 2(∆Tπ∗)∆i −
gTi Γ

∗, so gi = 2∆Tπ∗∆i−d∗

Γ∗ . Order the actions that
have nonzero probability in π∗ in decreasing order of
g, giving simplex indices i1, i2, . . . im. Then

∑
i π

∗
i gi =

βgi1 + (1− β)gim for some β ∈ [0, 1]. By substitution,∑
i π

∗
i ∆i = β∆i1 + (1 − β)∆im as well. This shows

that a policy that plays action i1 with probability β
and action im with probability 1− β has the same ex-
pected values of ∆ and g as π∗, which means it will
attain the same minimum Γ∗ in problem 1.

4.1 Regret

When the rewards for each action are uncorrelated,
this approach matches the regret of Thompson sam-
pling. Say the policy minimizing the information ra-
tio at a particular time t is πIS . Let the policy that
Thompson sampling would have chosen given the same
information Ft, be πTH . Then Γt(πIS) ≤ Γt(πTH) for
all possible histories A1, Y1, . . . At−1, Yt−1, regardless
of what policy these previous actions were sampled
from. As Γt(πTH) ≤ |A|/2, our regret bound using
the information ratio tells us that information directed

sampling has regret at most
√

|A|
2 H(A∗)T .

For more structured problems, however, IDS offers an
improvement over Thompson Sampling. Returning to
the pathological example of linear bandits with known
sparsity in the introduction, we can show that the in-
formation ratio when using IDS has a constant upper



bound. This stands in stark contrast to Thompson
sampling which, as we showed in the previous section,
has an information ratio that scales with the dimen-
sion of the space.

To be precise, we will show that the learning algo-
rithm prescribed by information directed sampling in
this case goes as follows:

• Let Θt be the set of possible indices for the
nonzero element of θ∗ consistent with the rewards
up to time t.

• Choose half of the elements in Θt. Let At be a
vector with nonzero values at these indices.

Theorem 7. For IDS on 1-sparse bandit problems,

Γt ≤
1

log 2

Proof. First, we can show that the binary search de-
scribed above both maximizes the expected informa-
tion gain at each step and minimizes the expected one-
step regret.

Say |Θt|= m. Given only the observations in Ft,
each element of Θt is equally likely. This means that
for any a for which all nonzero elements are in Θt,
E[aT θ∗] = 1

m . Binary search actions therefore mini-
mize ∆t. Expected one step regret is highest at t = 1,
where ∆t = 1− 1

d .

To show that a binary search maximizes information
gain, consider an arbitrary action a at time t. Let f
be the fraction of indices in Θt for which elements in a
are nonzero. If, after playing a, we observe a nonzero
reward, we will have mf remaining possibilities in Θt.
If we observe a reward of zero, this leaves m(1 − f)
possibilities. This means that the expected entropy in
αt+1 is

f logmf + (1− f) logm(1− f)

The entropy of αt is just logm. So the expected de-
crease in entropy is

−f log f − (1− f) log(1− f)

This corresponds to the entropy of a Bernoulli distri-
bution with parameter f , for which the known max-
imizer is f = 1

2 , yielding the binary search strategy.
The information gain with IDS in this setting is there-
fore log 2, making

Γt =
(1− 1

d )
2

log 2
≤ 1

log 2

4.2 Example: IDS for Beta-Bernoulli Bandits

To build further intuition about how information di-
rected sampling is performed in practice, consider a
stationary stochastic bandit problem where the prior
over each arm comes from a Beta distribution. Let
each arm a take samples from a Bernoulli distribution
with mean µa, where Pt(µa) ∼ Beta(Aa,t, Ba,t). Let
the highest arm mean be µ∗. To find gt(a) for each
a, we can use the decomposition specified in definition
(3). Let Ma|a′ = E[µa|µ′

a = µ∗].

gt(a) =
∑
a′

αt(a
′)D[Pt(Yt,a|A∗)∥Pt(Yt,a)]

=
∑
a′

αt(a
′)

(
Ma|a′ logMa|a′

Aa,t +Ba,t

Aa,t

+ (1−Ma|a′) log(1−Ma|a′)
Aa,t +Ba,t

Ba,t

)
To find αt(a) for each action a:

αt(a) = Pt

 ⋂
a′ ̸=a

{µa′ ≤ µa}


=

∫
Pt(µa = x)

∏
a′ ̸=a

Pt(µa′ ≤ x) dx

In general, this integral can be difficult to compute;
(Russo and Van Roy 2014) advise using Monte Carlo
methods to approximate it. A similar procedure gives

Ma′|a =
1

α(a)

∫ 1

0

xP (µa′ = x, µa = µ∗) dx

=
1

α(a)

∫ 1

0

xP (µa =x)

∫ x

0

P (µa′ = y)
∏

b̸=a,a′

P (µb ≤x) dy dx

Finally, we need Et[µ
∗]. This can be computed with

Et[µ
∗] =

∑
a

αt(a)Ma|a

Knowing this, we can find ∆t(a) = Et[µ
∗]− Et[µa].

Let
−→
∆ be a vector where component a is ∆t(a) and

−→g
be a vector where component a is gt(a). It remains to
find π to minimize

(piT
−→
∆)2

πT−→g

We can loop over all pairs of indices i and j and con-
sider the policies π = pei + (1+ p)ej for p ∈ [0, 1]. For
each pair of indices, choosing an optimal p is a convex
optimization problem that is easily approximated with
a binary search.



5 Adversarial Learning

The information ratio is a fundamentally Bayesian
concept, as it is defined in terms of a prior over the
optimal action A∗. This imposes an assumption about
the environment; if this assumption fails to match re-
ality, the theoretical guarantees developed so far may
no longer hold. To make a bandit algorithm as ro-
bust as possible, instead of assuming that the functions
f1, . . . fT are sampled from a prior, we can analyze how
the would perform if they were chosen adversarially.
In other words, we want to choose policies π1, . . . πt to
minimize

sup
f1:T∈M

R(π1:T , f1:T )

where R indicates the regret and M is a compact class
of priors. Bubeck et al. 2015 show that adversarial
regret is equivalent to worst case Bayesian regret over
all possible priors F with support in M.

Theorem 8.

min
π1:T

sup
f1:T∈M

R(π1:T , f1:T ) = sup
F

min
π1:T

R(π1:T , f1:T )

I will omit the proof, which is a generalization of Sion’s
minimax theorem. This gives us an idea how how to
create algorithms with low adversarial regret: first,
consider the worst possible prior F we could have.
Then choose your policy by optimizing the informa-
tion ratio. Unfortunately, this strategy by itself runs
into some problems. An adversary can choose a se-
quence of priors that lead to arbitrarily small infor-
mation gain, pushing the information ratio to infinity.
This is formalized in (Foster et al. 2023).

6 Using the AIR

The problem above can be avoided if the information
gain is used in a difference rather than a ratio. As we
saw previously, this is possible with the algorithmic
information ratio. A simplified form of the AIR is

AIRq(π, ν) = Ef ∼ν [f(A
∗)− Ea∼πf(a)]

− ηEf ∼ν [D[P (A∗|Yt)∥q]]

where q is a reference distribution. Unlike the standard
information ratio, this quantity stays finite even for
arbitrarily similar arms.

When we perform information directed sampling us-
ing the algorithmic information ratio rather than the
standard information ratio and adapt a different worst
case prior at each step, the result is called adaptive
minimax sampling. Specifically, we initialize q1 to be
uniform over all actions, and repeat the following steps
at each time t.

1. Find a saddle point ν, π of AIRq(π, ν).

2. Sample an action from π and observe Yt.

3. Update qt+1 to be the posterior P (ν|Yt).

This is essentially the same algorithm as information
directed sampling. As we use the algorithmic informa-
tion ratio instead of the information ratio, however,
we get to choose the prior adaptively at each step,
producing an algorithm that is prior-free. The ques-
tion of how exactly to find a saddle point in step 1,
however, was never addressed in (Xu and Zeevi 2023);
the authors only give an abstract formulation, leaving
an implementation for future work. At a high level,
M must be a family of distributions parameterized by
some θ for which the minimax problem is tractable.

6.1 Upper Bounds on Regret with AIR

While the algorithmic information ratio is always
smaller than the information ratio, it continues to pro-
vide an upper bound on regret. Specifically,

Theorem 9. R ≤ η log|A|+
∑T

t=1 AIRq for any ref-
erence distribution q.

Proof. For any sequence of qt,

T∑
t=1

log
qt+1(A

∗)

qt(A∗)
= log

qT (A
∗)

q1(A∗)

≤ log|A|

If we let qt+1 = P (A∗|At) and take an expectation, we
find that

T∑
t=1

D[Pt(A
∗|At), qt] ≤ log|A|

From the definition of AIR, we know that ∆t =
AIRq(π, Pt(ft)) + ηD[Pt(A

∗|At), qt]). As regret is

RT =
∑T

t=1 E∆t, we get RT =
∑T

t=1 AIRt,q +
η log|A|.

6.2 Regret of Adaptive Minimax Sampling

As we know that AIR ≤ ηIR, we can use the previ-
ous theorem to bound the regret of adaptive minimax
sampling.

Theorem 10. The regret of adaptive minimax sam-
pling is

≤ 2
√

log|A|TΓIDS

where ΓIDS is an upper bound of the information ratio
that information directed sampling sees at any step.



Proof.

R ≤ η log|A|+
T∑

t=1

AIRt,q

≤ η log|A|+TΓIDS

η

For ease of notation, let X = log|A| and Y = TΓIDS.
We can choose η to minimize the result by taking the
derivative.

X − Y/η2 = 0

η =
√
Y/X

Using this η reduces the upper bound to

=

(
Y

X

)1/2

X +

(
Y

X

)−1/2

Y

= 2
√
Y
√
X

6.3 Adversarial Thompson Sampling

The idea of using Bayesian online optimization algo-
rithms in an adversarial setting by choosing a worst
case prior at each step can be applied to Thompson
sampling as well in an algorithm called adaptive poste-
rior sampling also introduced in (Xu and Zeevi 2023).
Initialize π1 to be uniform over all actions. At each
time t

1. Sample an action At ∼ πt revealing ft(At)

2. Find the prior ν minimizing AIRπt
πt, ν.

3. Let πt+1 be the posterior distribution of A∗ given
ft(At), assuming ν as a prior.

This variation allows us to effectively perform Thomp-
son sampling without a prior over the bandit envi-
ronment, improving its robustness. Especially in non-
stationary settings, there may be no obvious choice
of prior over the functions fi, making adaptive poste-
rior sampling easier to use than Thompson sampling
in practice.

6.4 Regret of Adaptive Posterior Sampling

Choosing a worst case prior at each time allows Adap-
tive Posterior Sampling to achieve lower regret than
Thompson Sampling.

Theorem 11. The regret of Adaptive Posterior Sam-
pling is

≤ 2
√
log|A|(ΓTH/2 + 2)T

where ΓTH is an upper bound on the information ratio
obtained in Thompson sampling.

Proof. By (Xu and Zeevi 2023), the AIR for adaptive
posterior sampling is at most

1

η
ΓTH +

2

η

Once again, we can use the generic regret bound in
terms of the AIR to get.

R ≤ η log|A|+TΓTH

η
+

2T

η

Deriving with respect to η as before, we find that the
expression is minimized at

η =

√
TΓTH + 2T

log|A|

6.5 Lower Bounds on Regret with DEC

A slightly different form of the AIR is the Decision-
Estimation Coefficient (DEC) (Foster et al. 2023). In-
stead of balancing the one step regret term with the
information ratio, it balances it with a term

−ηD2
H(P (ft(At)), Qt(ft(At)))

This captures estimation error in the chosen arm.
Here, P is the true distribution from which the ft are
sampled, and Qt is a guess the learner makes about
the true distribution at time t. While the AIR pro-
vided an upper bound on regret, the DEC provides a
lower bound. While the proof is beyond the scope of
this survey, we can show that

Theorem 12. For any online learning algorithm,
there exits a choice of prior ν from which the ft
are sampled so that the expected regret is at least the
DEC

6 · T for all choices of η.

7 Conclusion

By explicitly balancing one step regret with informa-
tion gain, the information ratio and its variants (such
as the AIR and DEC) allow a single online learn-
ing algorithm – information directed sampling – to
achieve low regret across stochastic, structured and
non-stationary settings. If, instead of keeping the prior
fixed during learning, we assume a worst case prior
at every step, the same algorithm masters the adver-
sarial setting as well. That said, this approach has
its shortcomings. Computing the information ratio at
each step will in general require numerical integration,
which must be repeated a quadratic number of times
in the number of arms during optimization. Without
knowledge of a prior capturing a problem’s structure,



we must solve a costly minimax problem at each step.
And after all this, the resulting regret bounds are often
no better than that of Thompson sampling on stan-
dard problems. Overall, perhaps information directed
sampling and adaptive minimax sampling should be
seen primarily as algorithm design tools, providing a
template which must be refined for each concrete set-
ting to provide practical learning algorithms.
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