
Fast Reconciliation with Time Ordered Patricia Chains

Abstract
Patricia trie based data structures for CRDT reconcili-
ation incur expected cost logarithmic in the number of
total messages. Instead, I propose a structure that or-
ders messages by the local time at which they were sent.
Assuming all nodes incur independent exponentially dis-
tributed clock drift, we can show that the distribution of
local times for messages that have been sent but not yet
received by some pair of nodes in a cluster of gossiping
peers obeys a hypoexponential distribution, for which
we can calculate an upper bound on the median time T .
By using a separate Patricia trie for each interval of T
seconds, we can bring the communication and time com-
plexity of CRDT reconciliation down a constant. Formal
derivations of these results are backed up by results from
an empirical simulation on a network of 100 gossiping
nodes observed over a period of twenty five minutes.

Introduction
State machine replication ensures that the same sequence
of operations gets carried out in exactly the same order
on every node in a cluster, and that reads from any node
in the cluster at any time will all return the same state.
Supporting this highly general model comes at a cost,
however. These systems have trouble scaling to large
numbers of nodes, generally require all clients to commu-
nicate with a single coordinator node on every write, and
require complicated multi-phase commitment protocols.

State machine replication becomes a much easier prob-
lem if we assume a relaxed form of consistency known as
strong eventual consistency (Shapiro et al. 2011). There
are two requirements in this model:

• Eventual update: If an update is applied by a cor-
rect replica, then all correct replicas will eventually
apply that update.

• Convergence: Any two correct replicas that have
applied the same set of updates are in the same
state (even if the updates were applied in a different
order).

CRDTs

This form of consistency is easy to achieve, even in a fully
asynchronous setting, when state machine operations form
a join-semilattice (colloquially, a Conflict-free Replicated

Data Type or CRDT). Specifically, all state-machine op-
erations must be able to be combined by an associative,
commutative and idempotent operation known as the join
or least upper bound operation. For example, imagine if
the state and all operations are sets. The join operation,
in this case, is a union. Because set-union is commutative
and idempotent, the order in which each replica joins the
operations to produce the final state is arbitrary. Other
classic examples of CRDTs are counters (in which the join
of integer semilattice elements is taking the maximum),
graphs (which are just sets of edges), timestamped op-
erations (in which the join operation picks the element
with the higher timestamp), and sorted lists (which are
isomorphic to sets).

Recently, CRDTs have seen prominent use in peer-to-
peer collaborative editing applications. A collaboratively
edited text document can be represented as a sorted list
of position-annotated characters, or alternately as a tree
in which edges are strings of sequential characters. A
collaboratively edited vector graphics document can be
represented as a set of vector graphics primitives. A dis-
tributed key value is just a set of (key, value) pairs, where
some of the values may be tombstones.

The Gossip Protocol

To achieve strong eventual consistency, most CRDT sys-
tems use a gossip protocol. Each node in a network of
size N samples a waiting time from an exponential distri-
bution with rate β/N , then contacts another node in the
system at random. The two nodes take the join of each
others’ states, which propagates information throughout
the network. In what follows, I will assume that the
underlying CRDT is a set of ‘messages’, where each mes-
sage has some hashable binary representation. This is
not a restrictive assumption, as it corresponds to the so
called “free” semilattice which is able to represent any
other. Additionally, I will assume that each message is
accompanied by metadata including its senders’ unique
identifier and local time upon message generation. Mes-
sages are assumed to be uniquely identifiable given their
sender’s identity and local generation time. Because every
node has the opportunity to gossip with every other node,
Gossip protocols are naturally Byzantine fault tolerant
as long as each message is signed by its sender.

1

Patricia Structured Merkle Trees

For this system to be useful in practice, we need a fast
way for each node to find the union of its message set
with that of another node. The standard approach to
this problem is to use a Merkle tree (Auvolat and Taıani
2019), (Ramabaja and Avdullahu 2020). A Merkle tree
representing a set S partitions S into disjoint sets A and
B, recursively constructs Merkle trees for these left and
right children, and computes a hash for S combining the
hashes of its left and right children. An example is shown
in Figure 1. To check whether two sets represented by
Merkle trees are equal, it is sufficient with high proba-
bility to simply compare the root hashes. To find the
difference between two sets, we can descend recursively
from the root along every edge with mismatched hashes.

Specifically, when a node Y wants to receive new messages
from a node X, it follows the following algorithm:

• Ask X for the hashes of its root node and its chil-
dren, along with the range of values contained in
its left and right subtrees.

• If the range of values in Y ’s root node is entirely
contained in one of X’s subtrees, recurse on that
subtree. All of the messages in the other subtree
will be new to Y , and should be sent over as well.

• Otherwise, if the hashes of X’s root node and Y ’s
root node are the same, there are no new messages,
and the algorithm halts.

• If the root hashes differ, then the hashes of at least
one of their children must differ as well. Recurse
on any child nodes with mismatched hashes.

For a fully balanced Merkle tree containing n messages,
this recursion will always terminate after log n steps. This
means that the procedure above produces the set differ-
ences X \ Y and Y \ X in time and communication com-
plexity O((X∆Y) log n) where ∆ indicates the symmetric
difference.

Figure 1: Generic Merkle Tree

State of the art Merkle trees partition S into A and B
using the structure of a Patricia trie. A node in a Patricia

trie represents a set of messages which have the same bi-
nary representation up to bit k. Its left child is a Patricia
trie containing the subset of these messages with a one in
bit position k + 1, while its right child will be those with
a zero. We can keep track of the bits shared by all the
children of a Patricia trie node using two 64-bit words: a
mask and a shared path. An example is shown in Figure
2. If messages’ binary representations are distributed
uniformly, the expected number of nodes in each branch
is |S|/2, making the tree properly balanced.

Figure 2: Patricia trie for 0, 001 and 101.

Improving on Patricia Trees
In this paper, I claim that seeking a well balanced Merkle
tree is actually a mistake. If we arrange our Merkle tree
as a time ordered linked list or Merkle Chain instead of a
tree as in Figure 3, I claim that reconciliation is possible
in constant rather than logarithmic expected time in the
number of messages, leading to a protocol with constant
rather than logarithmic communication complexity in the
total number of messages. This improvement is possible
because the exchange procedure described above neglects
the fact that the probability a node lacks a given message
decreases exponentially with time since it was sent.

Figure 3: Merkle chain

Mean Field Analysis of the Gossip Protocol

To see the exponential decay in probability over time,
we can turn to mean field analysis. In (Bakhshi et al.
2008), the authors proposed the use of mean field analysis

2

for analyzing the Gossip protocol, but failed to find an
analytic form for the continuum limit of the underlying
Markov chain. My analysis is instead based on (Draief
and Massouli 2010), which applies mean field analysis
to the classic Susceptible-Infected-Susceptible model of
epidemics.

Let X be the number of nodes that know about a message
in a network of N nodes. The gossip protocol described
above, in which each node waits for a single exponentially
distributed timer with rate β/N to expire before contact-
ing a random peer, is equivalent to one in which each
node starts a separate timer for each peer in the network
with rate β

N(N−1) and exchanges message with that peer
once the timer goes off.

In this model, X evolves according to a continuous time
Markov chain. Each of the X nodes with the message will
tell one of their neighbors as soon as one of their X − 1
exponential clocks expires. Each clock expires with rate

β
N(N−1) , making the rate at which the first timer goes off
(and therefore the jump rate between states X and X +1)
equal to X(N −X) β

N(N−1) . This rate can equivalently be
expressed as N

N−1 x(1 − x)β, where x = X
N is the fraction

of nodes that know about the new message. This means
we can express X(t) in terms of a rate-1 Poisson process
Γ(t) as

X(t) = X(0) + N

N − 1Γ
(∫ t

0
x(1 − x)β dt

)
Similarly,

x(t) = x(0) + 1
N − 1Γ

(∫ t

0
x(1 − x)β dt

)
By Kurtz’s theorem (Kurtz 1971), this means that in the
limit as N → ∞, x almost surely follows the determinis-
tic ODE dx

dt = βx(1 − x). Intuitively, this means that at
any given moment in time, the fraction x of nodes with
the message are contacting the fraction (1 − x) of nodes
without it at rate β. The ODE is solved as

x(t) = eβt

eβt + c

where 1/(1 + c) is the fraction of nodes that know about
the message at time 0.

Let t be the number of seconds that have passed since a
given message was sent. Assume that message sending
started n seconds ago, so t is bounded by n. Let Z be
the event that this message is not yet known to a given
node. We know that p(Z|t) = c

eβt+c
, so we can compute

p(t|Z) using Bayes’ rule:

p(t|Z) = p(Z|t)p(t)∫ n

0 p(Z|t)p(t)dt

This simplifies to

p(t|Z) = βc

(c + eβt) (− log (c + eβn) + log(c + 1) + βn)

When we take the limit as the time horizon goes to infinity,
we get

lim
n→∞

p(t|Z) = βc

log(c + 1) (c + eβt)
I will assume that when a message is generated, it is im-
mediately forwarded to 1% of the the total nodes before
gossip begins, making c=99. In this case, a plot of p(t|Z)
is shown in Figure 4 using β = 2. The probability of
needing to exchange a message sent more than 6 seconds
ago is negligible.

Figure 4: Distribution of time since a message was sent
given that it was not yet received on a given node

Patricia Chains

Using this result gives a simple way to get reconciliation
times far better than what is possible with Patricia tries.
Consider when nodes X and Y attempt to reconsile their
message sets. Arrange all of X’s messages in a list l
ordered by the timestamp at which they were generated.
This gives a Merkle Chain rather than a Merkle tree. If
we assume that new messages get generated with constant
rate k, this means that any message in l that Y is missing
will lie within the first 6k entries with high probability.

In practice, nodes do not know the true timestamp at
which each message is generated; they each have noisy es-
timates of the true time, as their internal clocks will drift
in between NTP synchronizations. We can model this
phenomenon by assuming that the timestamp attached to
each message is the true timestamp plus an exponentially
distributed drift term with scale ν. For times greater
than 1 second, the pdf in Figure 4 is well approximated
by that of an Exponential distribution. The sum of two
independent exponentially distributed random variables
with scales ν and β−1 has a hypoexponential distribution
with median upper bounded by its mean of T = ν + β−1.

We can use this fact to improve the constant factor for
the O(1) reconciliation time in Merkle chains. Bin all
messages into T second chunks of time. Make a Patricia

3

structured Merkle tree for each bin and collect the bins
into a Merkle chain, as shown in Figure 5. I call the re-
sult a Patricia Chain. A missing message will land in the
most recent T -second block with probability at least 1

2 , in
which case it can be found in the relevant Patricia trie in
expected time log(kT). This means the expected lookup
time to find a missing message in a set of n messages
obeys the recurrence f(n) ≤ 1 + 1

2 f(n − kT) + 1
2 log(kT).

Solving the recurrence tells us that expected lookup time
is at most 2 + log(kT).

Figure 5: A patricia chain for messages with timestamps
in [0,3T]

Related Work
Causal DAGs

Instead of ordering messages by a local timestamp, (Klepp-
mann and Howard 2020) use a causal ordering determined
by the sender of each message. Each node keeps track of
a DAG of messages. When a node generates a new mes-
sage, it collects the hashes of root nodes in its DAG and
attaches this set of hashes as metadata. This is similar
to the timestamp we attached when using Merkle chains:
the set of hashes acts as a causal timestamp. Message a
is considered a parent of message b in the DAG if a has
the hash of b included in its metadata. An example of
the state stored at a node using this strategy is shown
in Figure 6. Gathering messages from node X to send
to node Y using this representation proceeds similarly to
reconciliation in a Merkle chain. X sends Y the hashes
of the roots of its DAG. Y responds with the hashes it
did not already know about. X tries again, sending the
children of these hashes. The process repeats until Y
finds all its missing messages.

As with Merkle chains, this algorithm only requires search-
ing through recently sent messages to reconcile different
sets. For this algorithm to perform well, however, the
number of root nodes in each node’s DAG must never get
too large, as each round of reconciliation requires sending
this set. Full analysis of when these conditions are met
is beyond the scope of this paper, but we can see intu-
itively that this situation can easily develop if the gossip
rate is too low relative to the aggregate generation rate.
Multiple heads occur any time messages are generated in

parallel and are not causally ordered. In practice, we will
see that the performance of this algorithm is similar to
that of Merkle chains. The number of root nodes stays
roughly constant over time, but this constant is much
higher than what we can obtain with Patricia chains.

The authors augment this base algorithm with an opti-
mization which, for each node, keeps track of the the most
recently seen set of root messages for every other node.
On reconciliation between nodes X and Y , Y constructs
a Bloom filter with all the messages it has received that
are ancestors of its cached roots for node X. This allows
X to quickly determine a large subset of the messages it
needs to forward to Y by checking if any of its new mes-
sages are not in the Bloom filter. Unfortunately, as this
requires each node to keep track of O(m) root message
sets, the optimization is impractical for large clusters.

Figure 6: Causal Merkle DAG. Messages b, c and d were
sent concurrently by nodes that knew about a. Message
e was sent by a node that did not yet know about d.

Read Repair

Instead of using a gossip protocol to bring nodes to-
wards consistency, we could use read repair. The idea
requires a full lattice (with a commutative ‘meet’ opera-
tion) rather than simply a semilattice (with only a ‘join’)
. For example, if the replicated state is a set of strings,
the join operation corresponds to set union and the meet
to set intersection. Clients ask multiple random servers
about whether they have the given string in their states,
asking for a ‘meet’ operation with a provided singleton
set. The client will perform a join of all the responses,
and then forward the result back to the nodes it asked.
These nodes will join the response into their own states.
With enough clients issuing requests for different lattice
elements, strong eventual consistency is still possible, al-
though convergence can take much longer. Note that
this consideration of read repair as a general operation
on lattices is novel, even though the underlying idea is
widely established.

Node-Wide Dot Based Clocks

Each message can be uniquely associated with the node
that introduced it paired with a per-node, monotoni-
cally increasing identifier. This pair is referred to as a
“dot based clock” in the literature. A set of messages,

4

therefore, can be described as a map from originating
nodes to a set of integer intervals. This idea comes from
(Gonçalves et al. 2017). Although the original paper did
not include a probabilistic analysis, we can see from the
same argument as above that there is a length of time
T for which all messages sent more than T seconds ago
have already been received with high probability. This
means the number of intervals stored for each originat-
ing node will remain constant even as the total number
of messages grow. Therefore, with high probability, the
computational cost of computing a set difference using
dot based clocks scales only with the number of nodes,
not the number of messages. This linear dependence on
the number of nodes, however, can present a problem in
systems of large enough scale.

Polynomial Based Reconciliation

An alternative scheme (Minsky et al. 2003) interprets
the hash of each message as an element of the finite
field F264 . Each node computes polynomials which have
their message sets as roots. If X has messages 2, 5, and
67, for example, it would create the monic polynomial
pX(z) = (z − 2)(z − 5)(z − 67). To find the roots present
in pX that are not in Y ’s polynomial pY , it suffices to find
the roots of pX/pY . If the symmetric difference in their
message sets is small, the polynomial pX/pY will have low
degree d, which means it can be uniquely recovered from
a small number m ≥ d of evaluation points using rational
function interpolation. Because of the efficiency of the
Gossip protocol, d will be small with high probability.

To turn this representation into a protocol, Y can send
X the values of pY at these m evaluation points. X can
compute pX at these points and divide to find pX/pY .
Once X finds the roots of this polynomial, it can send Y
the associated messages. Likewise, Y can compute the
roots of pY /pX to send X its missing messages.

With high probability, we can tell that the chosen m will
appropriately upper bound d by computing pX and pY

at an extra k validation points as well. If the recovered
polynomial agrees with pX/pY at these points, the au-
thors show that m ≥ d with probability over 1 − 10−11.
While this technique has nearly optimal communication
complexity, the computation time needed to factor the
resulting polynomial and resolve which messages are miss-
ing is much higher than with Merkle trees, which explains
why this approach is not used more widely in practice.

Evaluation
To confirm the theoretical results derived above, I com-
pared the performance of Patricia structured Merkle trees,
list structured Merkle tries, Patricia Chains and causal
DAGs described above by simulating a large network of
gossiping peers using a pool of coroutines on a single ma-
chine. For each strategy, I keep track of the tree-traversal

depth needed during each least-upper bound computation.
I average all nodes’ cumulative tree depth explored up
to each time t. This number is proportional to both the
average computation time necessary on each node, as well
as the network communication cost necessary for all set
reconciliations.

I conducted simulations varying the scale ν of the time
skew distribution, the scale β−1 of the gossip process and
the scale α of the message generation process from their
default values of ν = 1, β−1 = 1

2 , α = 1. All simulations
were run for 25 virtual minutes. As expected, Patricia
structured Merkle tree performance deteriorated with
time as the number of messages increased, while recon-
ciliation cost for chain structured Merkle trees remained
constant.

As shown in Figure 7, when the noise in message genera-
tion time estimates was high, Patricia tries fared substan-
tialy better than chains while the number of messages was
small. Patricia Chains (or PatChains) had the same con-
stant scaling as Merkle Chains, but with a much smaller
constant factor, beating the other two data structures by
a large margin regardless of the total number of messages.
Causal DAGs were unaffected by local time skew, tracking
the overall performance of Merkle chains.

Figure 7: Algorithm Comparison for Timestamp Noise

With increased message generation rates, all the studied
data structures incurred increased reconciliation times,
as shown in Figure 8. This is unavoidable, given that an
increased generation rate produces more messages to rec-
oncile. Causal DAGs performed especially well with high
generation rates, as each generated messages collapses
the number of root nodes, improving the performance of
future reconciliations.

5

Figure 8: Algorithm Performance Across Message Rates

As nodes gossiped among themselves more frequently,
the benefits of using a chain representation became more
pronounced. We see in Figure 9 that a fast gossip rate
can make up for time skew. This is anticipated, as the
expected number of messages in each patchain block is
k(ν +β−1). A more frequent gossip rate also makes causal
DAGs perform better, as fewer pairs of messages end up
without a causal order. Patricia tries, in contrast, are
unaffected.

Figure 9: Algorithm Performance Across Gossip Rates

Conclusion and Further Work
Because of the efficiency of the gossip protocol, data
structures for set reconciliation should prioritize access
to recently sent messages. Even when this exact sending
time is unknown, the noisy estimate provided by a nodes’
local time is sufficient to allow for optimal communication
complexity up to constant factors.

That said, my analysis has assumed that all nodes remain
on-line throughout the gossip protocol, quickly receiv-
ing updates about new messages. While this modeling
assumption may not be far from the truth in relatively
centralized settings like data centers, it does not accu-
rately describe the asynchronous peer to peer environment
for collaborative document editing in which many CRDTs
are used in practice. Allowing for new nodes joining and
leaving the network would considerably complicate mean
field analysis, and it is not clear that my results would
continue to apply under such a regime. Practically, one
could imagine using a hybrid reconciliation protocol in
which, for the first reconciliation a node goes through af-
ter coming back on-line, a traditional Patricia-trie based
strategy is used, continuing thereafter to use Patricia
chains. I leave such extensions to further research.

References
[1] Alex Auvolat and Francois Taıani. “Merkle Search Trees: Efficient State-Based CRDTs in Open Networks”. In:

IEEE Reliable Distributed Systems (2019).
[2] Rena Bakhshi et al. “MeanField analysis for the evaluation of gossip protocols”. In: International Conference

on the Quantitative Evaluation of Systems (QEST) (2008).
[3] Moez Draief and Laurent Massouli. Epidemics and rumours in complex networks. Cambridge University Press,

2010.
[4] Ricardo Jorge Tomé Gonçalves et al. “DottedDB: Anti-Entropy without Merkle Trees, Deletes without Tomb-

stones”. In: IEEE Reliable Distributed Systems (2017).
[5] Martin Kleppmann and Heidi Howard. “Byzantine Eventual Consistency and the Fundamental Limits of

Peer-to-Peer Databases”. In: ArXiv (Dec. 1, 2020).
[6] T. G. Kurtz. “Limit Theorems for Sequences of Jump Markov Processes Approximating Ordinary Differential

Processes”. In: Journal of Applied Probability 8.2 (1971), pp. 344–356.

6

[7] Y Minsky et al. “Set reconciliation with nearly optimal communication complexity”. In: IEEE Transactions on
Information Theory 49.9 (2003).

[8] Lum Ramabaja and Arber Avdullahu. “The Bloom Tree”. In: ArXiv (Feb. 19, 2020).
[9] Marc Shapiro et al. Conflict-free Replicated Data Types. 7687. INRIA, 2011.

7

	Abstract
	Introduction
	CRDTs
	The Gossip Protocol
	Patricia Structured Merkle Trees

	Improving on Patricia Trees
	Mean Field Analysis of the Gossip Protocol
	Patricia Chains

	Related Work
	Causal DAGs
	Read Repair
	Node-Wide Dot Based Clocks
	Polynomial Based Reconciliation

	Evaluation
	Conclusion and Further Work

