
A Taste of Quasi Monte Carlo

1 Introduction

Quasi Monte Carlo (QMC) methods attempt to ap-
proximate intractable integrals. The Monte Carlo
method to estimate the integral

∫
fdP for f : Rs → R

is to take n independent samples from the probability
distribution P and average them: 1

n

∑
xi∼p(X) f(xi) .

As the estimator is unbiased, the expected squared er-
ror E[(1n

∑
xi∼P (X) f(xi)−E[f(X)])2] is just the vari-

ance of f(X) divided by n, so the root mean square
error will decay as O(n−1/2). QMC methods try to
choose samples xi which lead to a faster decay than
n−1/2.

It turns out we can get an error that decays as O(n−1).
But there’s a catch. Unlike standard Monte Carlo
methods, the error in QMC methods can also grow
exponentially with the dimension s of the space we’re
integrating in. Fortunately, many functions we might
want to integrate in Rs don’t make full use of all
the available space; they concentrate most of their
variance along a much smaller number of dimensions.
QMC scales exponentially in these effective dimen-
sions. For example, the authors in Paskov and Traub
1996 use Quasi Monte Carlo to price financial deriva-
tives in a 360 dimensional space; because the effective
dimension was low, this performed far better than the
Monte Carlo estimator, shocking many in the com-
munity who assumed that QMC methods were inap-
propriate in high dimensions. This summary will lead
up to a proof of this result, roughly following the ap-
proaches in Dick et al. 2013 and L’Ecuyer and Lemieux
2002.

For the much of this summary, I will restrict the
discussion to integrals over a unit hypercube in s
dimensions using Lebesgue measure:

∫
[0,1]s

f(x) dx.

This can be done without loss of generality. For
one dimensional integrals with respect to a distribu-
tion P with an invertible CDF Φ, we can express∫
f dP as

∫ 1

0
f(Φ−1(x)) dx. In s dimensions, fac-

tor Φ(x) = Φ1(x1)
∏

i∈[s] Φi+1(xi+1|x≤i) and integrate
auto-regressively:

∫
[0,1]s

f(Φ−1
1 (x1),Φ

−1
2 (x2|Φ−1

1 (x1), . . .) dx

2 Techniques

Intuitively, Monte Carlo samples are less effective
when they are clumped closely together; we’d like the
samples to be well dispersed throughout the unit cube.
All QMC techniques can be seen as ways to spread
the particles out. There are two main families: lattice
rules and digital nets.

2.1 Lattice Rules

Sampling points on a lattice is an natural way to pre-
vent them from clumping together. Choose a genera-
tor z ∈ {1, 2, . . . n − 1}s. Then choose the n samples
as {kzn mod 1 : k ∈ [0, . . . n − 1]}. To ensure that ev-
ery one dimensional projection of these points has n
distinct values, we can require that gcd(zi, n) = 1 for
each coordinate zi of the generator z. A simple way to
achieve this is to make n prime; I will assume prime n
for the rest of this summary.

To choose the generator z, we can optimize each com-
ponent sequentially. Specifically, let z1 = 1. At each
subsequent step, having fixed z1, . . . , zi−1, we can pick
zi to minimize the worst case integration error using
the samples this generator would produce over any
function of i dimensions in a given class. As we will
see in later sections, this worst case error is easy to
compute, and finding a minimal zi for each of the s
steps can be done in time n log n. This is known as
the component by component (CBC) construction.

2.2 Digital Nets

Digital nets have a different way of spacing out sam-
pled points. In this paradigm, we subdivide the
unit hypercube in Rs into a size-b−ds grid of boxes
{
∏s

j=1[
j
bd
, j+1

bd
) : j ∈ [bd]} for some base b and pre-

cision d. We then pick bt points per box, giving
bt+ds = bm samples. The result is called a (t,m, s)
net. The general procedure goes as follows:

• Make a vector from the digits in the base b rep-
resentation of each integer up to bm. You get a
m× 2m matrix A.

• Multiply s different matrices C1, C2, . . . Cs by A
to get embeddings B1, B2, . . . Bs.

Figure 1: Example of samples from a lattice rule from
L’Ecuyer 2018. The vector v1 indicated on the plot is
the generator.

• Interpret the ith column of Bj as the jth coordi-
nate for sample i in base b−1.

Theorem 1. As long as the first d rows of each ma-
trix Ci are all linearly independent, this procedure will
produce exactly bt samples in each box.

Proof. Consider an arbitrary box v. All the points in
v will have ith coordinates with the same first d coeffi-
cients in base b−1. Call this vector of shared digits uv,i,
and concatenate them to get uv, a vector representa-
tion of box v. Let C̄i indicate the matrix containing
the first d rows of Ci. The digital net procedure cre-
ates samples in dimension i by applying Ci to every
vector in Zm

b where Zb is the finite field of integers mod
b. This means that the number of samples we generate
within v is the number of solutions z to the equation

uv =

C̄1

· · ·
C̄s

 z

This will be bm−t if and only if the rows are linearly
independent.

For the rest of this review, I will focus on lattice rules
rather than digital nets. That said, the same tech-
niques can be generalized to apply to digital nets as
well.

2.3 Randomization

While the deterministic constructions outlined so far
prevent particles from clumping, they will not result

Figure 2: Example of digital net from L’Ecuyer and
Lemieux 2002. By Theorem 1, each box must contain
exactly one sample.

in unbiased estimators as in standard Monte Carlo.
We can fix this by adding back some randomization.
Sample a vector ∆ ∈ [0, 1]s uniformly and shift all the
points by this offset mod 1. The result is unbiased,
as (∆+ xi) mod 1 is still distributed uniformly on the
unit cube for any deterministic offset xi. For the rest
of the paper, I will indicate addition modulo 1 by the
notation ⊕; this makes the shifted samples xi ⊕ ∆.
To decrease variance further, we can draw multiple ∆
samples and average the associated randomized lattice
estimates.

3 Worst Case Error

We will measure the quality of a set of points used for
QMC integration by its worst case integration error.
We can afford to be more abstract in this section, so
rather than just considering the uniform distribution
over the unit hypercube, I will consider sampling from
an arbitrary probability measure µ.

3.1 RKHS Formulation

The worst case integration error for the points
x1, . . . xn ∈ Rs over the set F of functions we might
want to integrate is

Ln,F,s := sup
f∈F

 1

n

∑
i∈[n]

f(xi)−
∫

f(x) dµ(x)

Calculating this supremum for arbitrary such sets is
difficult in general, but when F is a reproducing ker-
nel Hilbert space (RKHS), the analysis becomes much
simpler. Recall that a reproducing kernel Hilbert space

with kernel function k(x, y) is a complete inner prod-
uct space over functions such that f(x) = ⟨f, k(x, ·)⟩.

Theorem 2. Let F be a unit ball in RKHS H with
kernel k. The worst case squared integration error for
points x1, . . . xn ∈ Rs is

L2
n,F,s =

∫ ∫
k(x, y) dµ(x) dµ(y)

− 2

n

∑
i∈[n]

∫
k(xi, y) dµ(y)

+
1

n2

∑
i∈[n]

∑
j∈[n]

k(xi, xj)

Proof.

Ln,F,s = sup
f∈F

 1

n

∑
i∈[n]

⟨f, k(xi, ·)⟩ −
∫
⟨f, k(x, ·)⟩ dµ(x)

= sup

f∈F

〈
f,
∑
i∈[n]

k(xi, ·)−
∫

k(x, ·) dµ(x)

〉
= ∥ξ∥H

where ξ =
∑

i∈[n] k(xi, ·) −
∫
k(x, ·) dµ(x). Taking

⟨ξ, ξ⟩ gives the stated bound for L2
n.

The function ξ is called the representer of the QMC
error. Theorem 2 tells us that to minimize the worst
case integration error for any function with bounded
norm in the RKHS, we can minimize the norm of the
representer instead.

3.2 Shift Averaged Worst Case Error

We can extend the worst case error formula for an ar-
bitrary RKHS to average over the sampled shift values
∆ used to make QMC estimates unbiased. The pro-
cedure is specialized to integration over the uniform
distribution on the unit hypercube.

Theorem 3. The average squared representer norm
of shifted samples is

−
∫
[0,1]s

∫
[0,1]s

k(x, y) dx dy +
1

n2

∑
i∈[n]

∑
j∈[n]

ksh(xi, xj)

where ksh(x, y) =
∫
[0,1]s

k(x⊕∆, y ⊕∆) d∆

Proof. Start by substituting the point set in Theorem

2 with its shifted version.∫
[0,1]s

∫
[0,1]s

k(x, y) dx dy

− 2

n

∑
i ∈[n]

∫
[0,1]s

∫
[0,1]s

k(xi ⊕∆, y) dy d∆+

1

n2

∑
i ∈[n]

∑
j ∈[n]

∫
[0,1]s

k(xi ⊕∆, xj +∆) d∆

In the second term, we can perform a change of vari-
ables so that x = xi ⊕ ∆, making its double integral
equal to that of the first term. Applying the definition
of ksh to the last term yields the result.

This shows that the average worst case error for a ran-
domly shifted QMC scheme is the same as the worst
case error for the un-shifted scheme, but using the shift
invariant kernel ksh instead of the base kernel k. More
precisely, let Fsh be the RKHS with kernel ksh. The
shift averaged worst case error for a set of n points in
Rs is LFsh,n,s. We look at the integration error only
over the space Fsh of shift invariant functions. Note
that if the base kernel k is already shift invariant such
that k(x ⊕ ∆, y ⊕ ∆) = k(x, y), then ksh = k and
Fsh = F .

4 Connections to Other Distributional
Distances

In Section 3, we evaluated how close the finite sam-
ple approximation chosen by QMC was to the target
distribution (uniform on the unit hypercube) with a
distance of the form

sup
f∈G

(∫
f(x)dν(x)−

∫
f(x) dµ(x)

)
for some choice of RKHS G. In general, this is known
as the maximum mean discrepancy between the dis-
tributions. It is worth spending a moment to relate
this choice of metric to other common distances be-
tween distributions; we will see that other plausible
characterizations of distributional mismatch are really
instances or upper bounds on the MMD.

4.1 Relationship to Kolmogorov Distance

Traditionally, QMC algorithms were analyzed using
what is known as the anchored Sobolev space, with
kernel k(x, y) = 2 − max(x, y) and inner product

⟨g, h⟩ = g(1)f(1) −
∫ 1

0
g′(x)h′(x) dx. It includes all

continuous functions on the unit interval with first
derivatives in L2. While we will not be using this space
when we analyze multidimensional integrals in future

sections, I will discuss it briefly here, as it shows how
the MMD can be seen as a lower bound of the Kol-
mogorov distance when the associated RKHS is the
anchored Sobolev space. Recall that the Kolmogorov
distance has a similar form to the definition of MMD
above, but with G = {1·≤y : y ∈ R}. When G is not
a RKHS, the form is known as an integral probability
metric.

Theorem 4. The maximum mean discrepancy be-
tween the sample and target distributions using the an-
chored Sobolev kernel is a lower bound on their Kol-
mogorov distance.

Proof. Expand the associated MMD (which by Theo-
rem 2 is the norm of the representer).

⟨ξ, ξ⟩ = ξ(1)2 −
∫ 1

0

(ξ′(y))2 dy

ξ′(y) =
−1
n

∑
i∈[n]

1y≥xi
+

∫ 1

0

1y≥x dx

ξ(1) =
1

n

∑
i∈[n]

1−
∫ 1

0

1 dx = 0

⟨ξ, ξ⟩ =
∫ 1

n

∑
i∈[n]

1y≥xi
−
∫ 1

0

1y≥x dx

 dy

=

∫
D∗(y) dy ≤ ∥D∗∥∞

where D∗(y) = −ξ′(y) is called the local discrepancy at
y, giving the difference between the fraction of samples
in a region and the true probability of the region. The
quantity ∥D∗∥∞ precisely the Kolmogorov distance
between the empirical and target distributions.

The Kolmogorov distance between the sample and true
distributions is also called the star discrepancy of the
sampled points. Note that in this space, ⟨f, ξ⟩ =∫
f ′D∗dµ. Working from line 2 of Theorem 2, Holder’s

inequality tells us that Ln ≤ ∥f ′∥1∥D∗∥∞, which is
known as the Koksma-Hlawka inequality.

4.2 Relationship to Stein Discrepancy

In addition to Kolmogorov distance, the MMD also
generalizes kernelized Stein Discrepancy. The kernel-
ized Stein Discrepancy between distributions p and q
over F , a unit ball in a RKHS, is defined as

sup
f∈F

Ex∼q[Apf(x)]

where Ap is the linear Stein operator which maps f 7→
∇ log p(x)f(x)+∇f(x). If the functions in the RKHS
satisfy lim∥x∥→∞ p(x)f(x) = 0 then this distance is

zero if and only if the distributions are the same. The
class of functions with this property is called the Stein
Class of p.

Liu et al. 2016 notes that we can interpret this defini-
tion as an instance of maximum mean discrepancy over
the RKHS G = {Apf : f ∈ F}. The term

∫
f(x) dµ(x)

in the MMD is zero for functions in the Stein class,
making LG,n = ∥ 1n

∑
i∈[n] k(xi, ·)∥H .

5 Weighted Unanchored Sobolev
Spaces

To work in multiple dimensions, we will follow Sloan
and Wozniakowski 2002 and turn to a different RKHS:
the weighted unanchored Sobolev space. Let η(xj , yj) =
1
2B2(|xj − yj |) + (xj − 1

2)(yj −
1
2) where B2 = x2 −

x + 1
6 is the Bernoulli polynomial of degree 2. In Rs,

define the kernel k(x, y) =
∏

i(1+γiη(xi, yi)) for some
sequence γ1, . . . , γs ≤ 1 of constants. Intuitively, each
γi captures how much the values at dimension i can
effect the outcome of the function. Using the identity
that

∏
j∈[s](1+aj) =

∑
u⊆[s]

∏
j∈u aj and letting γu =∏

i∈u γi and γ∅ = 1, we can rewrite this definition as
a sum over subsets:

k(x, y) =
∑

u⊆{1:s}

∏
j∈u

γuη(xj , yj)

5.1 Integrating the Kernel

The nice thing about B2 is it has the property that∫ 1

0
B2(|x − y|)dy =

∫ 1

0
B2(y) dy = 0. This makes it

easy to integrate the kernel function for unanchored
Sobolev spaces.

Theorem 5. For any fixed x,
∫
[0,1]s

k(x, y)dy = 1.

Proof.

∫
[0,1]s

k(x, y)dy =
∑

u⊆{1:s}

γu

∫ 1

0

∏
j∈u

η(xj , yj) dy

=
∑

u⊆{1:s}

γu
∏
j∈u

∫
η(xj , yj)dyj

=
∑

u⊆{1:s}

γu
∏
j∈u

[
1

2

∫
B2(|xj − yj |)dyj +

(
xj −

1

2

)∫ (
yj −

1

2

)
dyj

]
= 1

Both inner integrals are zero, leaving a product over
the empty set.

5.2 Shift Averaged Kernels for Unanchored
Sobolev Spaces

As we discovered in Theorem 3, when a random shift
is applied to a set of points, the integration error for
functions in a RKHS with kernel k can be described
by the original formula, but using a shift invariant ker-
nel ksh. For weighted unanchored Sobolev spaces, this
shift invariant kernel is even simpler than the original.

Theorem 6. The shift invariant kernel for weighted
unanchored Sobolev spaces is

ksh(x, y) =
∏
j

(1 + γjB2(|xj − yj |))

Proof. Using the independence of the random shift
components in each dimension, the shift invariant ker-
nel can be written as∑

u∈{1:s}

γu
∏
j∈u

(
1

2
β2(|xj − yj |) + I(xj , yj)

)
where

I(a, b) =

∫ 1

0

((a⊕∆)− 1

2
)((b⊕∆)− 1

2
)d∆

It remains to show that I(a, b) = 1
2B2(|a − b|). As I

is symmetric, assume without loss of generality that
a ≤ b. We can remove the modular arithmetic by
considering three cases: either adding the shift will
keep b below one, or it will take b above 1 but not
a, or it will take both above 1. The first case will
be true whenever ∆ < 1 − b, the second whenever
1 − b ≤ ∆ < 1 − a, and the third when 1 − a ≤ ∆.
Therefore,

I(a, b) =

∫ 1−b

0

(a+∆− 1

2
)(b+∆− 1

2
)d∆

+

∫ 1−a

1−b

(a+∆− 1

2
)(b+∆− 1− 1

2
)d∆

+

∫
1−a

(a+∆− 1− 1

2
)(y +∆− 1− 1

2
)d∆

Integrating gives 1
2 (b− a)2− 1

2 (b− a)+ 1
12 , which sim-

plifies to 1
2B2(|b− a|).

Note that the shift invariant kernel, like the original
kernel, has the property that

∫
[0,1]s

k(x, y)dy = 1 for

fixed x; the proof from Theorem 5 still applies. By
combining Theorems 2, 5 and 6, we get

Corollary 7. The shift averaged worst case error for
weighted unanchored Sobolev space F is

L2
Fsh,n,s

= −1 + 1

n2

∑
i∈[n]

∑
j∈[n]

∏
d∈[s]

(1 + γdB2(|xd − yd|))

5.3 A Lower Bound on Ln

This expression for shift averaged worst case error pro-
vides a disheartening result: that integration error will
grow exponentially in

∑
i γi, no matter what points are

chosen by QMC. We can see this by finding a lower
bound on L2

n.

Theorem 8.

L2
n,s ≥ −1 +

1

n
exp

(
1

7

s∑
d=1

γd

)

Proof. Starting from corollary 7 we find

L2
n = −1 + 1

n2

∑
i∈[n]

∑
j∈[n]

s∏
d=1

(1 + γjB2(|xj − yj |))

Break the sum into the diagonal and off-diagonal ele-
ments. As B2(0) =

1
6 and B2 is always above − 1

6 , we
get the lower bound

−1+ 1

n2

n∑
j=1

s∏
d=1

(
1 +

γd
6

)
+

1

n2

n∑
i=1

∑
j ̸=i,j∈[n]

s∏
d=1

(
1− γd

6

)
The last term is positive, so we can drop it. This
means

L2
F,n ≥ −1 +

1

n
exp

 s∑
j=1

log(1 +
γj
6
)

As log(1+x) ≥ x

1+x for all x and γj ≤ 1, we can write
this as

≥ −1 + 1

n
exp

 s∑
j=1

γ/6

(6 + γ)/6

≥ −1 + 1

n
exp

 s∑
j=1

γ

7

We will never be able to get rid of this exp(
∑s

j=1 γj)
factor. This means that QMC methods will only work
well for integrating functions in spaces for which this
sum of the weights (or effective dimension) is small.
Intuitively, this requires the functions to concentrate
their variances within a small number of dimensions.

6 Beating Monte Carlo with Lattice
Rules

For a fixed set of samples, we now have an expression
for the worst case integration error. We can use this

to show that the lattice points produced by the CBC
algorithm from Section 2.1 give root mean square error
that decays as O(n−1) with the number of samples: far
faster than the O(n−1/2) scaling of Monte Carlo.

6.1 Worst Case Lattice Error

When the sample set x1, . . . xn are lattice points gen-
erated by the vector z, we can simplify the formula for
worst case error. Let L(z1, . . . , zs) be the worst case
shift averaged squared error for the n lattice points
derived from generating vector (z1, . . . zs).

Lemma 9.

L(z1, . . . zs) = −1 +
1

n

n−1∑
l=0

s∏
d=1

(1 + γdB̄2(lzd/n))

where B̄2(x) = B2(x mod 1).

Proof. By corollary 7,

L(z1, . . . zs) = −1 +
1

n2

n−1∑
j=0

n−1∑
k=0

∏
d∈[s]

(1

+ γdB̄2((j − k)zd/n))

Performing a change of variables l := j − k yields the
claim.

This gives the worst case error for lattice points using
a given generator z. The next step is to find the worst
case for whatever generator results from applying the
CBC construction algorithm.

6.2 Preliminaries for CBC Error

We will prove a bound on the error for the CBC algo-
rithm by induction. In one dimension, Lemma 9 tells
us that

L(z1, . . . zs) = −1 +
1

n

n−1∑
l=0

(1 + γ1B̄2(lz1/n))

To handle this average of Bernoulli polynomials over
a lattice, we will need a few tools from Fourier analy-
sis. When a function f : [0, 1] → R has an absolutely
convergent Fourier series, it can be written in the form

f(x) =
∑
h∈Z

f̂(h)e2πihx

f̂(h) =

∫
[0,1]

f(x)e−2πihx dx

As complex sinusoids of different frequencies are or-
thogonal, we can rely on

Theorem 10 (Character Property).

1

n

n−1∑
k =0

e2πikh/n =

{
1 if h = 0 mod n

0 otherwise

We will also need an expression for the Fourier trans-
form of the Bernoulli polynomial, given here without
proof.

Theorem 11. For x ∈ [0, 1]

B2(x) =
1

2π2

∑
h∈Z\{0}

e2πihx

h2

Armed with these results, we can prove

Lemma 12. For all n > 1 and 1 ≤ k ≤ n− 1,

1

n− 1

n−1∑
l=1

B̄2(kz/n) =
−1
6n

Proof. Start with the Fourier transform of
2π2

n−1

∑n−1
l=1 B̄2(kz/n).

2π2

n− 1

n−1∑
zs =1

B̄2(x) =
1

n− 1

n−1∑
zs=1

∑
h∈Z\{0}

e2πihz/n

h2

=
∑

h∈Z\{0}
h=0 mod n

1

h2
− 1

n− 1

∑
h∈Z\{0}

h ̸=0 mod n

1

h2

=
n

n− 1

∑
h∈Z\{0}

h=0 mod n

1

h2
− 1

n− 1

∑
h∈Z\{0}

1

h2

As
∑∞

h=1 1/h
2 = π2/6, this simplifies to −2π2

6n and
1

n−1

∑n−1
zs=1 B2(zs/n) =

−1
6n .

This will provide the base case for the inductive argu-
ment. For the inductive steps, we will need an auxil-
iary lemma about concave functions.

Lemma 13. For f(x) = xλ when λ ≤ 1,

f

(
n∑

i=1

xi

)
≤

n∑
i=1

f(xi)

Proof. Clearly this holds when n = 0. Assume the
inductive hypothesis that the claim is true for n −
1. Let a =

∑n−1
i=1 xi and b = xn. Note that f ′ is

decreasing because f is concave. This means that

f(a+ b)− f(a) =

∫ a+b

a

f ′(x)dx

=

∫ b

0

f ′(x+ a)dx

≤
∫ b

0

f ′(x)dx

= f(b)

Therefore,

f

(
n∑

i=1

xi

)
≤ f

(
n−1∑
i=1

xi

)
+ f(xn)

Apply the inductive hypothesis for the result.

6.3 CBC Error

Now we area ready for the main proof. Let z∗1 . . . z
∗
s

be the components of the generating vector chosen by
the CBC algorithm. We will show the following result:

Theorem 14. For λ ∈ (12 , 1]

Lλ(z∗1 , . . . z
∗
s) ≤

1

n− 1

∑
u⊆[s]\{0}

γλ
uK(λ)|u|

where K(λ) = 2ζ(2λ)
(2π2)λ

and the Zeta function ζ(x) =∑∞
h=1 1/h

x.

Proof. Returning to the base case of s = 1, we can
rewrite the inequality from Lemma 9 to make it easy
to apply Lemma 12.

L(1) = γ1
n

(
B2(0) +

n− 1

n− 1

n−1∑
l=1

B2(k/n)

)

=
γ1
n

(
n

6n
− n− 1

6n

)
=

γ1
6n2

When λ > 1
2 ,

Lλ(1) ≤ 1

n

(γ1
6

)λ
≤ 1

n
(1 +K(λ)γλ

1)

This proves the base case.

For general s, start by expressing the error in the sum-
of-subsets representation of the kernel.

L(z1, . . . zs)

= −1 +
∑

u⊆{1:s}

∏
j∈u

γu

 1

n

n−1∑
k=0

∏
j∈u

B̄2(kzj/n)

Separate these terms into those over subsets containing
s and those not containing s. The terms without s can
be collapsed into L(z1, . . . zs−1).

L(z∗1 , . . . z∗s) = L(z∗1 , . . . z∗s−1) + θ

where θ =
∑

u⊆{1:s}

(
1
n

∑n−1
k=0

∏
j∈u B̄2(kzj/n)

)
.

Take the Fourier transform of B2 in θ and apply The-
orem 10. Here, z∗u indicates the subvector of z∗ given
by the indices in u.

θ=
∑

s∈u⊆{1:s}

γu
(2π2)|u|

 1

n

n−1∑
k=0

∑
h∈(Z−{0})|u|

e2πikh
T z∗

u/n∏
j∈u h

2
j

=

∑
s∈u⊆{1:s}

γu
(2π2)|u|

∑
h∈(Z−{0})|u|

hT z∗
u=0 mod n

1∏
j∈u h

2
j

=
∑

s∈u⊆{1:s}

γu
(2π2)|u|

∑
h1∈Z\{0}

1

h2
1

· · ·
∑

hs∈Z−{0}
hT z∗

u=0 mod n

1

h2
s

Apply Theorem 13 recursively to find that

θλ

≤
∑

s∈u⊆{1:s}

(
γu

(2π2)|u|

)λ ∑
h1∈Z\{0}

1

h2λ
1

· · ·
∑

hs∈Z−{0}
hT z∗

u=0 mod n

1

h2λ
s

As the CBC algorithm picks the value for z∗s
that minimizes the error, we know L(z∗1 , . . . z∗s) ≤
Ezs [L(z∗1 , . . . zs)] (the average error over all possible
values of zs). Similarly, θλ ≤ Ezs [θ

λ]. Let the vector
zu(zs) be z∗u, but with the last element replaced with
zs. By linearity of expectation, we can write

θλ ≤
∑

s∈u⊆{1:s}

(
γu

(2π2)|u|

)λ

∑
h1∈Z\{0}

1

h2λ
1

· · · 1

n− 1

n−1∑
zs=1

∑
hs∈Z−{0}

hT zu(zs)=0 mod n

1

h2λ
s

≤
∑

s∈u⊆{1:s}

(
γu

(2π2)|u|

)λ

∑
h1∈Z\{0}

1

h2λ
1

· · · 1

n− 1
2

∞∑
c=1

1

h2λ
s

Using the definition of K(λ), this simplifies to

θ ≤
∑

u⊆{1:s}

1

n− 1
γλ
uK(λ)|u|

Apply the induction hypothesis to get the claim.

7 The Baker’s Transformation

While shift averaged lattice rules let the error decay
as O(n−1) in the number of samples, we can apply an
additional function to the samples to bring the decay
rate to O(n−2).

ϕ(t) := 1− |2t− 1|

This is known as the baker’s transformation, as it mim-
ics the way a baker stretches and folds bread back on
itself.

Figure 3: The Baker’s Transformation folds each co-
ordinate of a sample about the center of unit interval.

The shift averaged worst case error for samples that
have undergone the Baker’s transformation can be de-
rived from a change of variables in Theorem 3 to give

−
∫
[0,1]s

∫
[0,1s]

k(x, y)dx dy +
1

n2

∑
i∈[n]

∑
j∈[n]

kb(xi, yj)

where kb(x, y) =
∫
k(ϕ(x⊕∆), ϕ(y ⊕∆)) d∆.

A proof that this expression applied to lattice points
leads to error decaying as O(n−2) is beyond the scope
of this introduction. Interested readers should turn to
Hickernell 2002.

8 Computing Lattice Rules

The inner loop of the CBC algorithm in Section 2.1
requires computing the worst case squared error for
each possible value of zs ∈ [1, n]. From Theorem 9, this

value is −1+ 1
n

∑n−1
k=0

∏s
j=1(1+γjB̄2(kzj/n)). Naively,

it seems like this computation requires O(n2s) time.
Fortunately, Nuyens and Cools 2006 describe a much
faster approach.

To start, we will use a recursive definition of L2
n,s sim-

ilar to the one derived in Theorem 14:

L2
n,s =L2

n,s−1+
γs
n

n−1∑
k=0

B̄2(kzs/n)

s∏
j=1

(1+γjB̄2(kzj/n))

This can be more economically expressed as the inner
product

L2
n,s = L2

n,s−1 +
γs
n
⟨Ωz p

s⟩

between n dimensional vectors Ωz and ps where

Ωz,k = B2((kz mod n)/n)

psk =

s−1∏
j=1

(1 + γjB2(kzj/n mod 1))

An advantage of this vectorized representation is that
we can represent the squared error in s dimensions for
all n − 1 possible values of zs as the squared error in
s− 1 dimensions plus the matrix vector product Ωps.

For example, when n = 5, if row i of Ω represents the
error when zs = i, then

Ω = B2

0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

 /n

The order of the rows and columns of Ω is arbi-
trary. We can choose row i to represent the error
when zs = 2i in the multiplicative group of integers
(mod n). Similarly, we can order columns so that
Ωi,j = B2(2

(i−j) mod n/n) when j < n, and Ωi,n = 0
for all i. This makes a submatrix of Ω a circulant
matrix.

When n = 5, the zs values for rows 1 through 5 in this
permutation are (2, 4, 1, 3). This means

Ω = B2

1 3 4 2 0
2 1 3 4 0
4 2 1 3 0
3 4 2 1 0

 /n

Multiplication by a circulant matrix corresponds to
discrete convolution (in our case, by the first column of
Ω, cyclically extended in each direction). Convolution
is multiplication in the Fourier domain, which takes
linear time once ps is in the Fourier basis. To put it in
this basis, we only need to spend O(n log n) time tak-
ing the FFT. This means that the usual O(n2) matrix
multiplication cost is unnecessary. The fast version
of the CBC construction, therefore, goes as follows.
Here, ◦ indicates elementwise product and Ω̂ indicates

Algorithm 1 CBC Construction of z ∈ Zs

for each d ∈ [s] do

l← l+ γs

n (FFT−1(Ω̂◦FFT(p[1:n−1]))+ p[n−1]
6)

zd ← argmin l
p← p ◦ (1 + γdΩ[log2 zd mod n, :])

end for

the filter against which multiplication by the subma-
trix of Ω implicitly convolves.

9 Conclusion

This short introduction to Quasi Monte Carlo meth-
ods gives you a taste both of their benefits — sam-
ple efficiency — and their drawbacks – error grow-
ing exponentially in

∑s
d=1 γd – when it comes to ap-

proximating a distribution with a finite collection of
samples. That this overview barely scratches the sur-
face of the research area should come as no surprise.
I have worked exclusively with unanchored Sobolev
spaces here, but similar analysis is possible for an-
chored Sobolev spaces, like the one used in Section
4.1 to define star discrepancy. The lattice technique I
described only used a single generator (producing a so
called rank 1 lattice). In general, lattices can be gener-
ated from multiple elements, and generalizing the CBC
construction is necessary. I neglected to provide any
kind of analysis for digital nets; the analysis is similar
to what we showed for lattice rules, but uses Walsh
functions, the Fourier basis’s discontinuous cousin. To
learn more, I highly recommend the second half of Dick
et al. 2013, in addition to the other references listed
below.

References

[1] Josef Dick et al. “High-dimensional integration:
The quasi-Monte Carlo way”. en. In: Acta Nu-
merica 22 (May 2013), pp. 133–288.

[2] Fred J. Hickernell. “Obtaining O(N- 2+) Con-
vergence for Lattice Quadrature Rules”. en. In:
Monte Carlo and Quasi-Monte Carlo Methods
2000. Ed. by Kai-Tai Fang et al. Berlin, Heidel-
berg: Springer, 2002, pp. 274–289.

[3] Pierre L’Ecuyer. “Randomized Quasi-Monte
Carlo: An Introduction for Practitioners”. en.
In: Monte Carlo and Quasi-Monte Carlo Meth-
ods. Ed. by Art B. Owen and Peter W. Glynn.
Vol. 241. Series Title: Springer Proceedings in
Mathematics & Statistics. Cham: Springer Inter-
national Publishing, 2018, pp. 29–52.

[4] Pierre L’Ecuyer and Christiane Lemieux. “Re-
cent Advances in Randomized Quasi-Monte Carlo
Methods”. en. In: Modeling Uncertainty. Ed. by
Moshe Dror et al. Vol. 46. Series Title: Interna-
tional Series in Operations Research & Manage-
ment Science. New York, NY: Springer US, 2002,
pp. 419–474.

[5] Qiang Liu et al. “A Kernelized Stein Discrepancy
for Goodness-of-fit Tests”. en. In: International
Conference on Machine Learning. ISSN: 1938-
7228. PMLR, June 2016, pp. 276–284.

[6] Dirk Nuyens and Ronald Cools. “Fast algo-
rithms for component-by-component construction
of rank-1 lattice rules in shift-invariant reproduc-
ing kernel Hilbert spaces”. en. In: Mathematics of
Computation 75.254 (Jan. 2006), pp. 903–920.

[7] Spassimir Paskov and Joseph F. Traub. “Faster
valuation of financial derivatives”. en. In: (1996).

[8] Ian Sloan and Henryk Wozniakowski. “Tractabil-
ity of Integration in Non-periodic and Periodic
Weighted Tensor Product Hilbert Spaces”. en. In:
Journal of Complexity 18.2 (June 2002), pp. 479–
499.

