Other articles


  1. Fast SLAM

    This notebook looks at a technique for simultaneous localization (finding the position of a robot) and mapping (finding the positions of any obstacles), abbreviated as SLAM. In this model, the probability distribution for the robot's trajectory \(x_{1:t}\) is represented with a set of weighted particles. Let the weight …

    read more
  2. Mapping with Gaussian Conditioning

    For a robot to navigate autonomously, it needs to learn the locations of any potential obsticles around it. One of the standard ways to do this is with an algorithm known as EKF-Slam. Slam stands for "simultaneous localization and mapping", as the algorithm must simultaneously find out where the robot …

    read more